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A New Method for Recognizing Quadric Surfaces from Range Data and

Its Application to Telerobotics and Automation

(phase II)

by

Nicolas Alvertos* and Ivan D'Cunha**

Abstract

Pose and orientation of an object is one of the central issues in 3-D recognition

problems. Most of today's available techniques require considerable pre-processing,

such as detecting edges or joints, fitting curves or surfaces to segment images and try-

ing to extract higher order features from the input images. In this researchXWe present

a method based on analytical geometry, whereby all the rotation parameters of any

quadric surface are determined and subsequently eliminated. This procedure is itera-

tive in nature and has been found to converge to the desired results in as few as three

iterations. The approach enables us to position the quadric surface in a desired coordi-

nate system, then, utilize the presented shape information to explicitly represent and

recognize the 3-D surface. Experiments were conducted with simulated data for objects

such as hyperboloid of one and two sheets, elliptic and hyperbolic paraboloid, elliptic

and hyperbolic cylinders, ellipsoids, and quadric cones. Real data of quadric cones

and cylinders were also utilized. Both of theses sets yielded excellent results.

* Assistant Professor, Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, Virginia 23529-0246.

** Graduate Research Assistant, Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, Virginia 23529-0246.



I.INTRODUCTION

One of the most important tasks in computer vision is that of 3-D object recogni-

tion. Success has been limited to the recognition of symmetric objects and now

researchers are investigating recognition of several asymmetric objects as well objects

placed in complex scenes. Unlike the recognition procedure developed for intensity

based images, the recent upsurge of several active and passive sensors extracting qual-

ity range information, has lead to the involvement of explicit geometric shapes of the

objects for the recognition schemes [I]. Location and description of 3-D objects from

natural light images are often difficult to obtain. Range images on the other hand give

a more detailed and direct geometric description of the shape of the 3-D object.

The determination of the location and orientation of a 3-D object is one of the

central problems in computer vision applications. It is observed that most of the

methods and techniques which look into this problem require considerable pre-

processing such as detecting edges or junctions, fitting curves or surfaces "to segmented

images and computing high order features from the input images. Since 3-D object

recognition depends not only on the shape of the object but also the pose and orienta-

tion of the object as well, any definite information about the object's orientation will

aid in selecting the right features for the recognition process.

In this research we put forward a method based on analytical geometry whereby

all the rotation parameters of any object placed in any orientation in space are deter-

mined and eliminated systematically. With this approach we are in a position to place

the 3-D object in a desired stable position thereby eliminating the orientation problem

and subsequently utilize the shape information to explicitly represent the 3-D surface.

In the initial part of the research we discuss the rotation transformations and in

the later part of the research we propose our scheme to eliminate the rotation



parameters.

2. BACKGROUND

Most of the available techniques for describing and recognizing 3-D objects are

based on the principle of segmentation. Segmentation is the process in which range

data [1] is divided into smaller regions (mostly squares). These small regions are then

approximated by planar surfaces or curved surfaces based upon the surface mean and

gaussian curvatures. Regions sharing similar curvatures are subsequently merged, the

process known as region growing. There are several other approaches [2,3,4,5,6]

wherein the 3-D recognition problem has been dealt with. Levine et al. [7] briefly

review the various works in the field of segmentation, whereby segmentation has been

classified as region-based and edge-based approaches. Again surface curvatures play

an important role while characterizing each of these approaches.

We have proposed an approach [8] based on two-dimensional analytic geometry

to recognize a series of three-dimensional objects. An effective technique to determine

the 3-D object location and orientation will aid us in extending the proposed scheme to

various 3-D objects such as the hyperboloids of one and two sheets, the circular and

elliptical quadric cones, the circular and elliptical cylinder, the parabolic and hyper-

bolic cylinders, the elliptic and hyperbolic paraboloids and so on. Figure (1) illustrates

the various 3-D surfaces we propose to use for the recognition scheme. In our pro-

posed method [8] a feature vector consisting of various 2-D curves obtained after inter-

section of objects with planes in v_ous orientations serve as the medium of distin-

guishing objects from one another. Sets of range data of objects are attempted to be

identified as quadric surfaces based upon their representation by a second degree poly-

nomial.
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Figure 1. Quadric surfaces from left to right and top to bottom: Ellipsoid, Quadric
cone, Hyperboloid of one sheet, Ellipuc cyiinder, Hyperboloid of two sheets, Hyper-
bolic cylinder, Hyperbolic p_aboloid, Elliptic paraboloid, and Parabolic cylinder.



Recently [9] recognition of 3-D objects based upon their representation as linear

combination of 2-D images has been looked into. Transformations such as rotation

and translation has been considered for the 3-D objects in terms of the linear combina-

tion of a series of 2-D views of the object. Intersections of various 3-D objects with

each other, the edges obtained thereby, has been [10] looked into as means of obtain-

ing a surface description vector (SDV) graph for representing natural quadric objects.

This research proposes an optimal sensing strategy of a sensor system engaged in the

recognition and localization of 3-D quadric objects.

3. THEORY

Any quadric surface can be represented in terms of a second degree polynomial

of variables x, y, and z, such that

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 (1)

Let (x,y,z) describe the coordinates of any point in our coordinate system. Con-

sider a rotation of a about z axis, then the old coordinates in terms of the new one

are represented as

x = x'cosa + y'sina (2)

i.e., the rotation matrix is

y = -x'sina + y'cosa (3)

[cos_x sin(x ilRa= [--Soa cosa0 (4)

Next consider a rotation about the x" axis by an angle 13 of the same point. The

resultant coordinates and the old coordinates are now related by the following equa-



tions

z = z'cos_ - y"sin[3 (s)

whereby the rotation matrix is

y" = z'sin[3 + y"cos_ (6)

And finally consider a rotation about the

001cosl] sin_

-sinl3 cosl]J

y' axis by an angle ¥, then

(7)

z' = z"cosy + x"siny (8)

x" = z"sin_,- x"co_

The rotation matrix for the above process was

(9)

ICo So1R;,= 1

L-sin_' 0 cosyd

Figure (2) illustrates the behavior of a particular point (x,y,z) with respect the various

rotations described above.

Using the above set of equations and solving for x, y, and z in terms of x", y",

and z", yields

x = - x"(cosctco_ + sincxsinl3sin-/) + y"sinctcos_ + z"(sinycosa + cos'ysincxsin_)

y = x"(cos_incx - sinysinl]cosa) + y"cosl3cosct + z"(cosysin_osa - sinysina)

z = -x"sin_osl] - y"sin_ + z"cosycos_
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Figures 2(a), (b), (c), and (d) refer to the coordinate system initially,
after the first rotation, the second rotation, and subsequently the third
rotation, respectively.



After substitutingthesenew x, y, and z coordinatesin equation(1), we get anentire

set of new coefficientsfor x2,y2,z2, yz, xz, xy, x, y, and z. Thesenew coefficients

areas listed below •

A" = cosZ'/[a-cos2ct + b.sin2ot] + sin213sinZ'/[a-sin2ct + b.cos2ct]+ 2sin_inl3sirffcosotcosy (a - b) (10)

+ c-sinZ_cos213 - sin2ct [h.sin2_sin_] - sin2y [f.sinctcosl3 + g.cosctcos_ + h.cos2otsin_ - h.sinl3sin2ct ]

+ sin213sin_ (f.cosot - g.sinct) + h.sin2o_cosZ'/

B" = (a.sin2ct + b.cos2tx)cos2[3 + c.sin2[3 + sin2[3 [-f.costx - g.sin_ ] + h.sin2txcos2[3

C' = sinZy (a.cos2ot + b.sin2ot) + (a.sin2lx + b.cos2tx)cosZtsin213 + 2sino.sinl]sinycosotcos Y (a - b)

+ c-cos2ycos213 + sin2ot [h.cos2ysin2 l] - h.sinZy] + cosZ'tsin213 [f.cosa + g.sintx]

+ sin2y [-f.sintxcos[3 + g.costxcosl]+ h-cos2a.sin_]

(11)

(12)

2F'= I(b'cos2(x + a-sin2ct + h'sin2cx- c)sin2[$ + (2g.sinot + 2f'cos(x)cos2]3] cosq'

+ I((a - b)sin2ct + 2h-cos2o0cosl3 - (2g.cosot - 2f.sinot)sinl3] sin Y (13)

r

2G" = sin2YL-cos2ct(a + b.sin213) - sin2cz(a.sin213 + b) - c'cos213

- sin[$cosl3(f.cosot + g.sina) + h.sinotcosacos_3

+ sin2ot(a + b)sinl3 + 2cosl3cosZy(f.sinot - g'cosc0 + 2h'sin[3(sin2ctsin2y - cos2otcosZ'/)

(14)

r 1

2H'= sin2a[coso.cosl3(b - a) - h.sinl3sin_os[3] + sin213sin_a.sin2ct - b.cos2a + c)

+ cosysin_(2g.cos(x - 2f.simx) + sin2_sin?(2g-sin(x + 2f-cos(x) - 2h-cos2(xcos'_os_

(15)

2P' = 2cosy [-p.cosot + q.sinot] - 2sinl3siny [p-sinct + q-cosct] - 2r.sinTcos[3 (16)

2Q" = 2cos_ [p.simx + q'cos(x] - 2r.sinl3 (17)

2R" = 2cos_in[3 [p.sinot + q.cosct] + 2siny [p.cosot - q.sinct] + 2r.cosycos[3 (18)

D "= D



As seen from above, except for the constant D, all of the other coefficients are

affected by the rotation of a, 1_, and _,.

3.1. Scheme

The product terms _'z, xz, and xy in f(x,y,z) above, denote the rotation terms

which are to be eliminated. Elimination of all these rotation terms will place the 3-D

surface on a coordinate system plane parallel to our coordinate system.

At first sight, this problem appears quite simple. Eliminating each term, i.e., by

rotating the surface about the origin in a particular orientation by a suitable angle 0,

then eliminating the second term and then the next term. But that's not the case. In

the presence of a single rotation term i.e., if the equation is in the form

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2px + 2qy + 2rz + d = 0,

equation of the trace of the above surface in yz plane is obtained by setting x = 0, so

a rotation about the origin in the yz plane by an angle O will eliminate the term yz

from the above equation.

However, in the presence of two or more rotation terms, while trying to eliminate

a second rotation term, it is seen that the rotation term eliminated first, reappears and

thereby at any given instance there will be at least two rotation terms available. The

approach we have proposed is an iterative process, whereby at each stage the object is

rotated in each of the directions x, y, and z sequentially and the process is carded out

until all the product terms fall by, i.e., the coefficients f, g, and h converge to zero.

Since our aim is to eliminate the rotation terms xy, yz, and xz, let's now exclusively

consider the coefficients of these rotation terms, namely F, G, and H evaluated above.

In an iterative procedure we will be able to eliminate all of the product terms. For

e.g., we wish to eliminate the term xy. Then, by a specific rotation of a about the



z axis,we will beableto accomplishour goal. However,while carryingout this pro-

cess,the orientationof the object about the two planes yz and xz , i.e., the angles

the object madewith thesetwo planeshave beendisturbed. Now if we wish to elim-

inate the yz term, the objecthasto be rotatedaboutthe x axis by an angle 1_.How-

ever, in this instance,while carrying out the process,the already missing xy term

reappearsthoughthe magnitudeof its presentorientationhasbeenreduced. Henceby

carrying out the aboveprocessin an iterative fashion,there comesan instancewhen

all thecoefficientsof the producttermsconvergeto zero.

Let us considerthe equations(13), (14), and (15) respectively. Let us eliminate

the coefficient h, i.e, the xy term in step 1. This can be accomplished by rotating

the object about the z axis by an angle a, whereas 13 = _' = 0. Under these cir-

cumstances the new coefficients look like as shown below:

2fll = 2g.sina_ + 2f.cosoq

2gll = 2g-coseq - 2f.sineq

2hll = (a - b)sin2eq + 2h.cos2ct t = 0 where
a

cot2oq = b - --
2h

As seen above the coefficient h has been forced to 0. The most significant bit of the

subscript refers to the iteration number, whereas the least significant bit of the sub-

script reflects the number of times the object has been rotated by a specific angle. In

the above case the LSB of 1 refers to the first instance where the object has been

rotated by an angle a. The remaining coefficients a, b, c, p, q, and r also reflect

changes brought about by the above rotation. The new coefficients look as shown

below:

all = a'cos2al + b'sin2eq - 2h-sinalcoscq



bll = b'cos20tt + a'sin2_ + 2h'sinalcOSal

Cll = C

2pl l = 2p.cosoq - 2q-sina 1

2ql 1 = 2p.sina 1 = 2q.cosa I

2rll = 2r

The new quadric equation now has a look as shown below:

F(x,y,z) = axl x2 + blly 2 + c11z2 + 2fllyz + 2gtlxz + 2Pilx + 2qny + 2rllz + d = 0

Consider the second step wherein the coefficient corresponding to the yz term is

forced to zero. In this particular case, the object has to be rotated by an angle 13

about the x axis, whereas a = ¥ = 0. Under these circumstances, the new rotation

coefficients (signifying the product terms) becomes

ctt - btl

2f12 = (b12 - cl2)sin2_t + 2fll"cos2131 = 0 where c°t2131 - 2 fll

2g12 = 2gtt'cos_31

2h12 = -2gll'sin131

At the same time the other coefficients become

a12 = all

b12 = c11"sin2131+ bll"cos_l - 2fll"sin131cos131

c12 = btt'sin21_t + cll'cos2131 + 2fll'sin131cos_31



2pl2= 2pt a

2q12 = 2qll"cos[51 - 2ril"sin_l

2r12 = 2qll'sin131 + 2qa'cos[31

The new quadric equation as before looks like as shown below:

F(x,y_) = al2 x2 + b12y2 + cx2z 2 + 2gx2xz + 2h12xy + 2p12x + 2q12y + 2rl2z + d = 0

In the final step of the initial iteration, the coefficient corresponding to the

forced to zero.

axis, whereas

become

xz term is

In this case, the object is to be rotated by an angle 't about the y

a = 13 = 0. Under these circumstances, the new rotation coefficients

2f13 = 2hx2"sin71 = -2gll'sinl3asinTl

2g13 =(a13 - c13)sin271 + (2gll"cosal - fll'sinal)cos_lcos271 = 0

C12 -- a12

where cot2y1- 2 g12

2h13 = 2h12"cosy1 =-2gll-sin131co_l

Let's now carefully analyze the coefficients of xy, yz, and zx obtained in the final

step of the first iteration. Consider for instance the coefficient corresponding to the yz

term. It is observed that while proceeding from one step to the other, the new

coefficients are getting multiplied by the sine or cosine of the concerned angle. This

implies that in every succeeding steps, these coefficients are decreasing in their magni-

tude. To justify the above statement, let us now consider all the coefficients obtained

in the second iteration.

At the end of stage 1 of the second iteration, the rotation coefficients become



2f21 = 2fx3.cosot 2 = -2glt.sin[3xsin71cosct, 2

2g21 = -2fla.sinot 2 = 2gll.sin_lsin71sin(x 2

b13 - a13

2h2t = 0 where cot2a2 = 2 hx3

At the end of the second stage of the second iteration, the rotation coefficients become

c2t - bzl
2f22 = 0 where cot2132 - 2

2g= = 2gll'sin13asin71sincqcos[3z

f21

2h22 = -2gtt'sin_t sinTtsint_2sin_2

Similarly at the end of the final stage of the second iteration, the rotation coefficients

reduce to

2f23 = -2911"sin_asinTxsincz2sin132sin72

2g23 = 0 where cot2et2 -
b13 - at3
--h13

2h23 = -2gll'sin[_lsinTlsin(x2sin_zcos'_'2

Or2, 132,and ¥2 are the respective rotation angles along the z, x, and y axes in the

second iteration. Hence it is observed with each iteration that the rotation coefficients

get smaller and smaller in magnitude and eventually drop out.

We are now in a position to formulate a rotation matrix whose elements

correspond to the directional cosines of the x, y, and z axes of the rotated object.

Rotation Matrix = P'WRO R_ (19)



where

cosot sinct i]
COS_0

Subsequently,

011%= cos13 sin13

-sin13 cos13J

R_, = 1

L-sin'/ 0 cosq'j

where

coscxco_ + sinczsinl3sin,/ cos-/sinct - sinysin13cosct sirr/cos13]

RrR_Ra = [ --cos13sinot cos13cosa cos13 [ (20)
L-sinycosot + cosysinotsin13 -sin_iny--cosysin[3cosec cos13cos',/]

n rt n

5" = Ecti, 13" = Z13i, and _ = E'ti.
i=l i=l i=l

n corresponds to the iteration where all the rotation terms go to zero.

Once the rotation terms, i.e., xy, yz, and xz are eliminated, the 3-D surface has

the representation of

F(x,y,z) = Ax 2 + By 2 + Cz 2 + 2Px + 2Qy + 2Rz + D = 0

where A, B, C, P, Q,

rotation terms.

A natural question to ask is the following •

(21)

and R are the coefficients evolved after the elimination of the

" Can the terms of the first degree be

* proved numerically and experimentally.



eliminated by means of a translation ?"The answer is, "sometimes they can and some-

times they cannot". For the case, where the term can be eliminated, is supported by the

following theorem [11].

3.2. Translation of the rotated object

Theorem: The terms of the first degree of an equation of a quadric surface can be

eliminated by means of a translation if and only if the surface has a center, in which

case the first degree terms are eliminated if and only if the new origin is a center[l l].

Since all the 3-D object we are considering do have centers, we do not have to

worry about the second case. The method of completing squares is the easiest to

determine the coordinates of the new origin.

Consider equation (21), grouping the like terms

Ax 2 +2Px +By 2 + 2Qy + Cz 2 + 2Rz + D = 0 =>

Upon completing squares, we get

+D=0

A + + B + + C + + D - + + = 0 (22)

where -P/A, -Q/B, and -R/C are the coordinates of the new origin.

4. CONCLUSIONS

In this research we have proposed a method to determine the pose and orientation

of a natural quadric surface from its range image and subsequently eliminate all of

these rotation parameters.



Once the rotation and the translationproceduresaccomplishtheir objective of

placing a quadric surfacein a desiredcoordinatesystem,we will be in a situationto

implement the necessaryrecognitionprocess. We wish to extend upon our previous

work [7] to the various quadric surfacesas mentionedbefore. Experimentsfor the

alignment algorithm were performed on range data of circular cylinder rotated in

space. The resultsobtainedwerevery promising. Rangedataof quadric cones,para-

bolic cylinders,andhyperboloidsarepresentlybeinginvestigated.
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